Proceedings of the 20th International Semantic Web Conference (ISWC) 2021:(submitted)
draft material -- please do not cite

Context-Enriched Learning Models for Aligning
Biomedical Vocabularies in the UMLS
Metathesaurus

No Institute Given

Abstract. The Unified Medical Language System (UMLS) Metathe-
saurus is a biomedical terminology integration system that integrates
over 200 biomedical vocabularies. The Metathesaurus construction pro-
cess mainly relies on lexical algorithms and manual curation. A lexical-
based learning model (LexLM) was developed to predict synonymy among
Metathesaurus terms. The LexLM largely outperforms a rule-based ap-
proach (RBA) that approximates the current construction process. How-
ever, the LexLLM has the potential to be improved further because it only
uses lexical information from the source vocabularies, while the RBA also
takes advantage of contextual information.

In this paper, we develop context-enriched learning models (ConLMs) by
adding to the LexLM multiple types of contextual information available
to the UMLS editors, including source synonymy (SS), source seman-
tic group (SG), and source hierarchical relations (HR). We represent
contextual information in context-enriched knowledge graphs (ConKGs)
with four variants ConSS, ConSG, ConHR, and ConAll. We train the
embeddings for the ConKGs using different KG embedding techniques,
including TransE, DistMult, HolE, and ComplEx. Finally, we create the
ConLMs by concatenating the ConKG embedding vectors with the word
embedding vectors from the LexLM. Our extensive experiments show a
substantial performance improvement from the ConLLMs over the LexLLM,
namely +4.41% in precision (93.16%), +2.27% in F1 (92.88%), while re-
taining similar performance in recall. Our experiments also show that the
combination of TransE and ConHR performs best among the pairwise
combinations of KG embedding techniques and ConKG variants. Finally,
we show that adding contextual information not only benefits pairs of
terms with high lexical similarity as we expected, but also improves per-
formance on all generalization test datasets. These results demonstrate
the importance of using contextual information in the UMLS vocabulary
alignment.

1 Introduction

The Unified Medical Language System (UMLS) Metathesaurus is a biomedi-
cal terminology integration system developed by the US National Library of
Medicine to integrate biomedical terms by organizing clusters of synonymous
terms into concepts. The current construction process of the UMLS Metathe-
saurus heavily relies on lexical similarity algorithms to identify candidates for

synonymy. Additionally, synonymy asserted between terms in a source vocabu-
lary is generally preserved in the Metathesaurus and terms that do not share a
common semantics are prevented from being recognized as synonymous. Final
synonymy determination comes from human curation by the Metathesaurus ed-
itors. Given the current size of the Metathesaurus with over 15 million terms
from 214 source vocabularies, this process is inevitably costly and error-prone
(as pointed out by [4,5,15,21,22].) Nguyen et al. [25] formalized synonymy pre-
diction in the Metathesaurus as a vocabulary alignment problem (UVA). Addi-
tionally, to support performance evaluation of vocabulary alignment algorithms,
they developed a rule-based baseline (“RBA baseline”) that approximates the
Metathesaurus construction process described above.

Motivation. To improve the current Metathesaurus construction process,
Nguyen et al. [25] developed a supervised learning approach with lexical learning
models (LexLMs) that largely outperformed the RBA baseline. However, they
note as a limitation of their work that they only leveraged lexical information
and did not include any contextual information. The LexLLMs used a Siamese
architecture [23] with BioWordVec embeddings [35] and LSTM layers [9] for com-
puting semantic similarity scores between biomedical terms, and subsequently
using these scores to predict synonymy. Moreover, they created different dataset
variants with different degrees of lexical similarity among the negative exam-
ples for training the LexLLMs and testing their generalization. Their experiments
confirmed the hypothesis that the degree of lexical similarity among negative ex-
amples strongly influences the performance of the LexLLMs. The LexLLM variant
trained on the most diverse dataset performs best across the four generalization
datasets with different degrees of lexical similarity. Therefore, we will reuse this
variant as the reference LexLM (“LexLM baseline”) for our evaluation. Section
5.2 will describe the datasets used in this paper.

Although the LexLM largely outperformed the RBA, we believe that learn-
ing can be further improved, because the LexLLM only uses lexical information
from biomedical vocabularies, while the RBA also takes advantage of contex-
tual information. More specifically, we hypothesize that adding contextual infor-
mation to the LexLM will support the disambiguation of homonymous terms.
In the example from Figure 1, the terms “COLD” from NCI and “Cold” from
SNOMEDCT_US have the same word embeddings and will therefore be predicted
as synonymous by the LexLM. However, these two terms can be disambiguated
by taking into account their source synonyms, such as “Chronic Obstructive
Lung Disease” and “Common cold”, respectively. Similarly, disambiguation can
be provided by hierarchically-related terms in the source vocabularies, such as
the parent terms “Chronic Lung Disorder” and “Viral upper respiratory tract
infection”, respectively. Of note, source semantics (i.e., the semantic group as-
signed to the top-level terms in a source vocabulary and inherited by all descen-
dant terms) cannot be used to distinguish between these two disease terms. We
will use these two homonymous terms as our running example.

In this work, we develop context-enriched learning models (ConLMs) by
adding contextual information to the lexical information in the LexLM to im-

prove synonymy prediction at scale in the UMLS Metathesaurus (UVA task).
However, this is neither a systematic evaluation, nor a performance benchmark
among all KG embedding techniques. Instead, our goal is to explore the use of
KG embedding approaches to represent contextual information in the UVA task.
More specifically, we explore candidate algorithms from the main families of KG
embedding described in [28,31], namely algorithms based on (a) transitional
distance and (b) semantic matching.

Objectives. Our first objective is to improve the performance of the LexLLM
by adding contextual information. In practice, we develop context-enriched learn-
ing models (ConLMs) by adding to the LexLM multiple types of contextual in-
formation using four different KG embedding techniques. We hypothesize that
the ConLMs will outperform the LexLM, particularly because the addition of
contextual information should support disambiguation of homonymous terms.
Ideally, increased precision would not come at the expense of recall.

Our second objective is to evaluate the contribution of different ConKG vari-
ants and KG embedding techniques in the ConLMs for the UVA task. More
specifically, we investigate (1) which ConLM variant performs best; and (2) how
the ConLMs compare to the reference LexLM.

Our last objective is to assess the performance of the ConLMs on various
datasets containing pairs of terms with different degrees of lexical similarity.
Because we expect contextual information to be useful mainly for disambiguation
of homonymous terms, we hypothesize that performance improvement will be
more markedly observed on datasets with a high degree of lexical similarity
among negative examples. Ideally, increased performance on lexically similar
terms would not come at the expense of the performance on less similar terms.

Contributions. Our contributions include:

— An approach to develop context-enriched learning models (ConLMs) with
substantial performance improvement over the reference LexLLM, namely
+4.41% in precision (93.16%), +2.27% in F1 (92.88%), while retaining sim-
ilar performance in recall.

— An extensive set of experiments for evaluating the ConLLMs with the pair-
wise combination of ConKG variants and KG embedding techniques. Our
experiments show that overall, the embedding technique TransE paired with
the ConHR variant emerged as the best performer.

— An extensive set of experiments showing that the performance gain observed
for the dataset with a high degree of lexical similarity among negative exam-
ples (+5.94% in precision, +1.49% in recall, and 4+3.72% in F1) is conserved,
but to a lesser degree, on datasets with a lower degree of lexical similarity
(between +0.5% and +1.06% in F1).

The remainder of the paper is organized as follows. Section 2 provides back-
ground knowledge about the Metathesaurus and how lexical and contextual in-
formation is transformed into ConKGs. Section 3 describes the KG embedding
techniques selected for training the embedding vectors for the ConKGs. Section
4 describes how the ConLMs are developed. In Section 5, we present our exper-

Viral upper respiratory
tract infection
A3287865

Semantic Group:

Semantic Group: |
Disorders |

- Chronic Lung Disorder
Disorders

A20252825

NCI
coLb
A17684490
NCI
Pulmonary Emphysema
A10762107 3

SNOMEDCT_US

Chronic Obstructive
Lung Disease
A10768901

NCI Cold snomepcT_us | Common cold

A2880095 A2927171

Legend

Source

Term 7"+ has_parentSCUI (source hierarchy)

AUl

has_sameSCUI (source synonymy)

atom

Fig. 1. Example illustrating the contextual information available for disambiguating
the terms COLD from NCI and Cold from SNOMEDCT_US, including source syn-
onyms (through has_sameSCUI), source semantic group (Disorders), and source hi-
erarchical relations (through has_parentSCUTI).

iments and their results. In Section 6, we discuss our findings and future work.
In section 7, we discuss the related work. Section 8 concludes the paper.

2 Context-Enriched Knowledge Graphs

This section describes how multiple variants of context-enriched knowledge graphs
(ConKGQG) are constructed using the various types of contextual information from

source vocabularies. These ConKG variants will be used as input for training the

KG embeddings in Section 3.

2.1 Background Knowledge on the UMLS Metathesaurus

Nguyen et al. [25] described the knowledge representation aspects of UMLS used
in the synonymy prediction task. Here we briefly summarize key concepts from
[25] and add new concepts specific to contextual information. The examples
below are illustrated in Figure 1.

AUI. Every occurrence of a term in a source vocabulary is assigned a unique
atom identifier (AUI). For example, “Cold” in SNOMEDCT_US and “COLD”
in NCI are assigned different AUIs, “A2880095” and “A17684490”, respectively.

SCUI and mg. Each AUI is optionally associated with one identifier pro-
vided by its source (“Source CUI” or SCUI). Terms considered synonymous in a
source vocabulary are assigned the same SCUI. For example, the terms “COLD”
and “Chronic Obstructive Lung Disease” are associated with the same SCUI,
“C3199”, from the source vocabulary NCI. SCUIs play an important role in
the Metathesaurus construction process because source synonymy is very often
conserved in the Metathesaurus.

(M1) Let S be the set of SCUIs in the Metathesaurus. Let m, be the function
that maps an atom a € A to an SCUI s € S such that s = ms(a).

Source Semantic Group and m,. Source semantic groups (SGs) are as-
signed to a source vocabulary (or to its top-level terms for multi-domain vocab-
ularies). An SCUI from a source will inherit its semantic groups from its source.

For example, “COLD” with SCUI “C3199” inherits the SG “Disorders” from
the top-level term “Disease, Disorder or Finding” (from NCI). Let G be the set
of semantic groups in the Metathesaurus.

(M2) Let mg4 be the function that maps an SCUI s € S to a set of semantic
groups such that my(s) C G.

Source Hierarchical Relations and mj. An SCUI may have parent or
child terms in a source vocabulary. For example, “COLD” with SCUI “C3199”
(from NCI) has “Chronic Lung Disorder” with SCUI “C98541” as a parent and
“Pulmonary Emphysema” with SCUI “C3348” as a child.

(M3) Let my, be the function that maps an SCUI s € S to a set of its parents,
my 2 S — S such that my(s) C S.

2.2 Context-enriched Knowledge Graphs

Here we explain how we construct the context-enriched knowledge graphs (ConKGs)
and define the set of triples constructed for each ConKG variant.

A is the set of AUIs, S is the set of SCUIs, G is the set of SGs, and the
mapping functions {ms,my, ms} are defined in M1, M2, and M3 above.

ConSS. Let r; denote the binary relation has_.SCUI from an AUl a € A to
an SCUI s € S. Va € A, if s = mgy(a) : (a,7s,s) € ConSS. The ConSS variant
includes the triples representing the relationship between an AUI and its SCUL

(V1) ConSS = {(a,rs,s) : s =ms(a)}.

ConSG. Let r, denote the binary relation has_SG from an SCUI s € S
toaSG g e G. Vs € §,if g € my(s) : (s,rg,9) € ConSG. The ConSG vari-
ant includes the triples representing the relationship between an SCUI and its
semantic groups.

(V2) ConSG = {(s,74,9) : g € my(s)}.

ConHR. Let r; denote the binary relation has_parentSCUI from an SCUI
s € S to its parent SCUL p € S. Vs € S, if p € my(s) : (s,7n,p) € ConHR.
The ConHR variant includes the triples representing the relationship between
an SCUI and its parent SCUI.

(V3) ConHR = {(s,71,p) : p € mp(s)}.

ConAll. ConAll = ConSS U ConSG U ConHR.

3 Embeddings for Context-enriched Knowledge Graphs

This section describes how the ConKG triples are transformed into their re-
spective ConKG embedding vectors using various KG embedding techniques.
We selected TransE [3], RESCAL [27], DistMult [34], HolE [26], and ComplEx
[29] due to their demonstrated all-around performance. These trained ConKG
embedding vectors will be then added to the LexLM to form the ConLMs in
Section 4. A list of abbreviations is provided in Table 2 for convenience.

3.1 Knowledge Graph Embeddings

We explore different KG embedding approaches to transform the structural rep-
resentation of ConKG triples T into a low-dimensional vector space, while pre-
serving the semantics defined in the ConKG. Such transformation allows the
ConKa triples to be added to the LexLLM as a set of ConKG embedding vectors.
Here we describe how ConKG triples are transformed into ConKG embedding
vectors.

Given that A is the set of AUls, S is the set of SCUIs, and G is the set
of SGs, let E be the set of ConKG entities, E = AU S UG. Let R be the set
of all ConKG relations, R = {rs,ry,r5}. Let T be the set of ConKG triples, a
triple t € T if t = (e1,7,e2) with » € R, and ej,es € E. Let T” be the set of
negative ConKG triples, t' = (e},r,e5) € T if 3t = (e1,r,e2) € T and t' ¢ T.
Let d =2xi (i € N) be the dimension of embedding vector. We choose d to be
an even number to facilitate the representation of ComplEx vectors as explained
later in this section.

Generating embedding vectors. KG embedding techniques generate the
embeddings for entity and relation vectors of dimension d using a scoring function
fr: Ex Rx E — R. This scoring function measures the plausibility of facts by
minimizing the loss function L(T, T”, 0) with respect to parameter 8 either by
(a) distance-based (TransE) or (b) similarity-based functions (RESCAL, HolE,
DistMult, and ComplEx). (See [13] for details about scoring and loss functions
for the various embedding techniques.)

Entity embeddings. Let E be the set of embedding vectors of E, then
e € E is an embedding vector of entity e. Here we only use entity embeddings
because our ConKG has only three relations and these relation embeddings are
not useful for our task. While the embedding for an entity or relation from
TransE, HolE, and DistMult is a single vector with dimension d = 2i, ComplEx
embeddings require two vectors (real and imaginary) of dimension d = 7. In this
case, we concatenate the real and imaginary vectors for each entity into a single
vector of dimension d = 2i. For ComplEx, we denote the two-vector embeddings
as E = (E,., E;p), then we define the embedding vector for an entity e as
E(e) = E,.(e) ® Eyy,(e) Ve € E.

The output of each KG embedding technique is a set of entity embeddings:
Econss, Econsas Econar, and EconanVe € E, which will be used to derive
the ConKG embeddings in the next section.

Table 1. Set of ConKG embeddings for each ConKG variant

Variant‘ ConKG Triples ‘ Set of ConKG embedding vectors ‘
‘ ConSS H(ll rs,s) 1 s =ms(a)}‘{Ecv”ss() ® Econss(ms(a)) : Va € A} ‘
‘COHSG ‘{(377°g, g) g €mgy(s)} ‘{EConSG(ms (a)) ® I‘j‘:ig(msm)“ Econsa(g;) :Va€ A, g; € mg(ms(a))}‘
|ConHR|{(s,74,p) : p € ma(s)}{Econmr(ms(a)) : Va € A} ‘
{(a,rs,5) : s = ms(a)}{Econau(a)®
ConAll|{(s,74,9) : g e mg(s)} | Econau(ms(a))®
{(s,rn,0) : p € ma (LN "N Boonan(gy) : Va € A, g; € my(ma(a))}

Table 2. List of abbreviations used in the paper

‘Notion Meaning ‘Notion Meaning

AUI Atom unique ID A set of AUIs

SCUI Source concept unique identifier |7 set of ConKG triples

SS Source synonym T set of ConKG negative triples
SG Semantic group S set of SCUIs

HR Hierarchical Relation Mg A— S

TOPN_SIM Highest level of lexical similarity |G set of SG's

RAN_NOSIM Zero lexical similarity mgy S—=G

RAN_SIM Low lexical similarity mp S =S

LexLM Lexical-based learning model E AUSUG

ConLM Context-enriched learning model |E set of entity embeddings
ConKG Context-enriched knowledge graph|C set of ConKG embeddings
TRAIN_ Prefix of training datasets }E average an array of vectors
GEN_ Prefix for generalization test sets |® concatenate vectors

3.2 ConKG Embeddings

We derive ConKG embeddings C for each type of contextual information de-
scribed in Section 2.2 with respect to a € A, so that we can add them to the
word embedding vectors from the LexILM described in Section 4. For each type
of contextual information, we generate a ConKG embedding vector ¢ € C for
each a € A by concatenating the entity embeddings of ConKG entities inside the
ConKG triples corresponding to a, including m(a) for an SCUI, and mgy(ms(a))
for a semantic group. As an SCUI is mapped to a set of semantic groups, we
get the entity embedding for each semantic group and average the set of embed-
ding vectors (}E) We reuse the mapping functions defined in Section 2.2. Table 1
shows the set of the ConKG embeddings for each type of contextual information.
The output of each KG embedding technique is a set of context-enriched em-
beddings for all AUIs: Cconss, Cconsg, CConHRy and CConAllv Ya € A, which
will be added to the reference LexLLM in Section 4 and evaluated in Section 5.

4 Neural Network Architecture

This section describes the LexLM architecture from [25], which we will be us-
ing as the reference model, and our approach in adding the context-enriched
embeddings from Section 3 to the LexLLM.

LexLM. The LexLM (grey boxes in Figure 2) adopts the Siamese archi-
tecture [23] that takes in a pair of inputs and learns representations based on
explicit similarity and dissimilarity information defined during training. The in-
puts (a pair of atoms) are pre-processed and transformed into their numerical
representations with BioWordVec embeddings pre-trained from PubMed text
corpus and MeSH data [35]. The word embeddings are then fed to Long Short
Term Memory (LSTM) layers to learn the semantic and syntactic features of the
atoms through time. The LexLLM relies exclusively on the lexical features of the
atoms, i.e., the terms themselves.

ConLMs. We develop the ConLM (Figure 2), which adds to the LexLM
(at the LSTM layer) the different variants of ConKGs described in Section 3.
For each ConKG variant, we first feed the respective trained ConKG embedding

Similarity between 0...1

Manhattan Distance

Dense (50) Dense (50)
Dense (128) Dense (128)
Contex!uahzed Atom Emb. } Contextualized Atom Emb.
LSTM \ Dense (50)) (Dense (50)) LSTM
BioWordVec Emb \ ConKG Emb. 1 ConKG Emb BioWordVec Emb.
f f f
HolE | [TransE | HolE TransE
Convert into input ids ¢ S ; ! Convert into input ids
| DistMult | |_ComplEx | DistMult ComplEx
. f 1
Truncate/Pad to 30 tokens ‘ ConKG ‘ ConKG Truncate/Pad to 30 tokens
. . f f i
BioWordVec Tokenizer | synonym H Semant ‘ \ H\u)rchy l Synonym Semantic Hierarchy BioWordVec Tokenizer

COLD Atom Cold

Fig. 2. The architecture of the neural network in the Context-enriched Learning Model
(ConLM) created by adding the ConKG embeddings to the Lexical-based Learning
Model (LexLM) embeddings (grey boxes) from [25].

vectors to a 50-unit dense layer to learn the derived features in Table 1. We then
concatenate @ the output of the dense layer with the output of the LSTM units
from the LexLM. Together, they form the contextualized atom embedding, which
is then fed to subsequent dense layers with 128 and 50 learning units respectively.
The output is a Manhattan distance similarity function [1], which computes a
score indicating the degree of synonymy between the atoms. The datasets used
for training and testing the ConLMs are described in Section 5.2. The trained
models are evaluated to assess their respective contribution in Section 5.

5 Evaluation

This section presents a set of experiments to evaluate the hypotheses described
in Section 1. The experiments are reproducible with the materials temporarily

available for reviews at https://bit.ly /iswc-supp-4 with a no-cost UMLS license !.

5.1 Experimental Setup

We conducted three types of experiments: (1) training embeddings for ConKG
variants using the different KG embedding techniques described in Section 5.3
and comparing their performance against that of the reference LexLM, (2) train-
ing and testing ConLMs using ConKG variants in Section 5.4 and 5.5 respectively
to identify the best combination, and (3) testing the combination of ConKG vari-
ants with lexical similarity variants in Section 5.6 (with the best KG embedding
technique obtained from Section 5.5) to demonstrate that contextual information
mostly benefits datasets with high levels of lexical similarity.

"https://uts.nlm.nih.gov/uts/

Table 3. The ConKG variants with their respective number of unique entities, rela-
tions, positive and negative triples

|ConKG|# of Entities E|# of Relations R|# of Positive Triples|# of Negative Triples|
| ConAll | 12,366,913 | 3 \ 16,425,157 \ 16,425,157 \

| ConSS | 12,366,913 | 3 \ 8,713,194 \ 8,713,194 \
| ConHR | 12,366,913 | 3 \ 3,520,969 \ 3,520,969 |
| ConSG | 12,366,913 | 3 \ 4,190,994 | 4,190,994 |

All these experiments are deployed as batches of parallel jobs with the Slurm 2
workload manager to the Biowulf high-performance computing cluster 2 at the
National Institutes of Health (NIH). We used Tesla V100x GPUs with 32GB
of GPU RAM and at least 220GB of CPU RAM for each training and testing
task. While the implementation is configurable and reproducible in a different
environment, these experiments are computationally- and resource-intensive. We
estimated that we used over 2500 GPU hours for the set of experiments reported
in this paper. Run-time information is provided in 5.3 and 5.4.

5.2 Datasets

This section describes the datasets for the three types of experiments. We used
release 2020A A of the UMLS Metathesaurus restricted to English terms from ac-
tive source vocabularies. The UMLS can be downloaded with a no-cost license .

Datasets for Training Embeddings for ConKG Variants. Table 3
shows the characteristics of the four datasets generated for training the KG
embeddings for each ConKG variant. We use a 1:1 positive to negative triple
ratio for generating the triple instances described in Section 2.2. The negative
triples are automatically generated using the “bern” sampling technique [32] to
corrupt either the e; or ey entity.

Datasets for Training and Testing ConLMs. To compare the ConL.Ms
against the LexLM baseline, we reuse the training and testing datasets generated
in [25]. More specifically, the LexLM variant trained on the TRAIN_ALL dataset
performs best across the four generalization tests (GEN_ALL, GEN_TOPN_SIM,
GEN_RAN_SIM, and GEN_RAN_NOSIM) and is used as baseline here. In prac-
tice, we use the dataset TRAIN_ALL for training our ConLMs (Section 5.4), and
the four generalization datasets for testing our ConLMs (Section 5.5 and 5.6).

5.3 Training 16 Variants of ConKG Embeddings

Training parameters. We use the OpenKE # library [10] to implement the KG
embedding techniques to train the embeddings independently for each ConKG
variant described in Section 2.2. Since this is not a systematic evaluation, nor
a performance benchmark across various KG embedding techniques, we did not

Zhttps:/ /slurm.schedmd.com/documentation.html
3https://hpc.nih.gov/
“https://github.com/thunlp/OpenKE

Table 4. Training results for each combination of ConKG variant (ConSS for source
synonymy, ConSG for semantic group, ConHR for hierarchical relations, and ConAll for
all of them) and KG embedding technique (TransE, HolE, DistMult, and ComplEx),
with loss (final epoch) and time (seconds per epoch).

| | ConAll | ConSS | ConHR | ConSG |
Model

‘ ‘ loss‘ time‘ loss‘ time‘ loss‘ time‘ loss‘ time‘
DistMult	0.119120.087	0.0418	13.243	0.2803(8.772	0.00889.049	
HolE	[4326582.2109	23.696	3550789.6875]13.235	631802.8467	8.975	269649.34969.001
ComplEx	0.3766	31.612	0.1380[14.414	0.2129]7.473	0.0207]9.418	
TransE	0.0054 4.000] 0.0013	2.025 0.00130.808	0.0009]0.972			

select the list of hyper-parameters that work best for each technique. Instead we
ran various hyper-parameter selection experiments and finalized a list of hyper-
parameters that balance performance and training speed, as well as maximize the
GPU memory across all techniques. Each ConKG variant is trained with each KG
embedding technique with (a) 1000 epochs, (b) batch size of 50, (c) learning rate
of 0.05, (d) loss margin of 1.0, (e) 1:1 positive to negative triple sampling ratio,
and with (f) embedding dimension of size 100. In terms of learning optimizer,
we found that stochastic gradient descent (SGD) worked best for TransE and
Adam [16] for HolE, DistMult, and ComplEx. The full (1000 epochs) training
for each combination of ConKG variant and KG embedding technique takes
approximately nine hours. Table 4 shows the training results.

In our training, we observed that RESCAL was not able to converge (de-
spite hyper-parameters tuning). Therefore, we omit reporting RESCAL results
in Table 4 and exclude it from experiments (2) and (3) in Section 5.1.

5.4 Training and Testing 16 ConLM Variants

We trained 16 ConLLM variants using the 16 variants of the ConKG embeddings
obtained from the training presented in Section 5.3. We use the TRAIN_ALL
dataset variant from the training of the LexLM in [25] for training our ConLMs.
We also use the same training hyper-parameters from the LexLM, namely 100
epochs, batch size of 8192, and Adam optimizer. Training and predicting each
epoch of the ConLMs takes about 30 minutes.

We test these 16 trained ConLLM variants using the GEN_ALL generalization
test set. We report the results in Table 5 and discuss them in Section 5.5.

Since TransE performs best all-around, we test the four trained ConLMs
based on TransE using the generalization test sets (GEN_ALL, GEN_TOPN_SIM,
GEN_RAN_SIM, and GEN_RAN_NOSIM). We report the results in Table 6 and
discuss them in Section 5.6.

5.5 Comparing pairwise combinations of ConKG variants and KG
embedding techniques

We have trained the ConLMs with the TRAIN_ALL dataset and tested them
with the GEN_ALL test set (as discussed in Section 5.4). Here we discuss the

10

Table 5. Experimental results for each combination of ConKG variant (ConSS for
source synonymy, ConSG for semantic group, ConHR for hierarchical relations, and
ConAll for all of them) and KG embedding technique (TransE, HolE, DistMult, and
ComplEx). Each combination is also compared against the baseline LexLM [25]. The
difference between the TransE ConKG variant and the LexLLM baseline is shown in the
row TransE-LexLM. The RBA baseline is provided for reference.

| | ConAll | ConSS |

‘ ‘accuracy‘precision‘ recall ‘ F1 ‘accuracy precision‘ recall ‘ F1 ‘

| DistMult | 0.9946] 0.9094] 0.9250] 0.9172| 0.9879] 0.9339| 0.6739] 0.7828)]
[HolE | 0.9869] 0.9064] 0.6643] 0.7667] 0.9945] 0.9200] 0.9102] 0.9151]
|ComplEx | 0.9943] 0.9068| 0.9196] 0.9131| 0.9951] 0.9293| 0.9180/0.9236]
|TransE | 0.9949| 0.9156|0.9277]0.9216] 0.9905| 0.9247|0.9204| 0.9226|
[LexLM | 09938 0.8875] 0.9254] 0.9061| 0.9938| 0.8875| 0.9254| 0.9061|
|TransE-LexLM| 0.0011] 0.0281] 0.0023| 0.0155/ 0.0012| 0.0372|-0.0050| 0.0165
[RBA | 0.9863] 0.8631] 0.6871] 0.7651| 0.9863] 0.8631| 0.6871| 0.7651]
| | ConHR \ ConSG \

accuracy‘precision‘ recall‘ F1 ‘accuracy‘precision‘ recall‘ F1 ‘

| Dist Mult | 0.9859] 0.8711] 0.6640] 0.7536] 0.9946] 0.9101| 0.9258] 0.9179)]
[HolE | 09858 0.8688| 0.6639] 0.7526] 0.9869] 0.9069| 0.6641| 0.7668)|
| ComplEx | 0.9850] 0.8481] 0.6567| 0.7402] 0.9951| 0.9208| 0.9286| 0.9247|
|TransE | 0.9954| 0.9316[0.9260|0.9288| 0.9952| 0.9191|0.9346|0.9268|
[LexLM | 0.9938] 0.8875] 0.9254] 0.9061] 0.9938] 0.8875| 0.9254] 0.9061]

|TransE-LexLM| 0.0016| 0.0441|0.0006[0.0227| 0.0014| 0.0316] 0.0092| 0.0207

[RBA | 0.9863] 0.8631] 0.6871] 0.7651] 0.9863] 0.8631| 0.6871| 0.7651

test results obtained from these ConLM variants with different combinations of
KG embedding techniques and ConKG variants.

Comparing KG embedding techniques and ConKG variants. Table
5 shows that the TransE embedding technique paired with the ConHR variant
performed best overall, with 99.54% accuracy, 93.16% precision, 92.59% recall,
and 92.88% F1. Compared to the best LexLM variant from [25], the TransE-
ConHR combination improved 0.16% in accuracy, 4.41% in precision, and 2.27%
in F1, while retaining similar performance in recall. This result validates our
hypothesis that the addition of contextual information to the LexLM would im-
prove performance. Of note, several ConLLM variants outperformed the reference
LexLM (e.g., TransE paired with any ConKG variant, ComplEx paired with
ConAll, ConSS, or ConSG.) The performance of the poorly performing ConL.Ms
is similar to that of the RBA.

Comparing KG embedding techniques. In Table 5, TransE scored high-
est in every measure for the three variants (ConAll, ConSG, and ConHR), while
ComplEx and TransE performed similarly for the ConSS variant. ComplEx
scored second highest with a close performance to TransE in the three vari-
ants ConAll, ConSS, and ConSG, but severely suffered from both low precision
and very low recall when learning hierarchical relations in the ConHR variant.
DistMult performed well for the ConAll and ConSG variants, but similar to

11

Table 6. Experimental results for each combination of ConKG variant (ConSS for
source synonymy, ConSG for semantic group, ConHR for hierarchical relations, and
ConAll for all of them) and degree of lexical similarity (GEN_ALL, GEN_TOPN_SIM,
GEN_RAN_SIM, and GEN_RAN_NOSIM). Each combination is trained with the same
TRAIN_ALL dataset, and compared against the LexLM baseline [25]. Differences from
the baseline are shown in the Diff rows.

| GEN_ALL | GEN_TOPN_SIM |

‘accuracy‘precision‘ recall‘ F1 ‘aocuracy‘precision‘ recall‘ F1 ‘

|Score| 0.9949] 0.9156

0.9277] 0.9216] 0.9869| 0.92530.9333

0.9293)

| Diff | 0.0011] 0.0281

0.0023] 0.0155] 0.0062| 0.0412| 0.0223| 0.0319]

Score| 0.9950| 0.9247| 0.9204| 0.9226] 0.9860| 0.9342| 0.9136] 0.9237]

| Diff | 0.0012] 0.0372

-0.0050] 0.0165| 0.0053| 0.0501| 0.0026] 0.0263]

Score| 0.9954| 0.9316| 0.9260/0.9288| 0.9880| 0.9435| 0.9259]0.9346|

| Diff | 0.0024] 0.0011| 0.0249] 0.0138] 0.0018| 0.0001| 0.0197| 0.0107]

CO“HR\ Diff | 0.0016] 0.0441] 0.0006| 0.0227| 0.0073| 0.0594] 0.0149] 0.0372
|Score| 0.9953] 0.9203| 0.9359] 0.9280 0.9879] 0.9333| 0.9359|0.9346|

CODSG\ Diff | 0.0015| 0.0328] 0.0105] 0.0219] 0.0072| ~ 0.0492| 0.0249| 0.0372

LexLM|Score| 0.9938| 0.8875] 0.9254] 0.9061| 0.9807| 0.8841| 0.9110] 0.8974|
| GEN_RAN SIM | GEN_RAN NOSIM |
‘accuracy‘precision‘ recall ‘ F1 ‘accuracy‘precision‘ recall ‘ F1 ‘

| |Score| 0.9922| 0.9822]|0.9333] 0.9571] 0.9938] 0.9955] 0.9333] 0.9634|

ConAll R N N

| | Diff | 0.0017| -0.0036| 0.0223| 0.0102| 0.0014| -0.0016| 0.0171| 0.0085]

| |Score| 0.9909] 0.9872| 0.9136] 0.9490| 0.9922] 0.9943| 0.9157| 0.9534|

ConSS R .

| | Diff | 0.0004| 0.0014| 0.0026| 0.0021| -0.0002| -0.0028|-0.0005|-0.0015]

| |Score| 0.9924] 0.9912| 0.9259] 0.9575| 0.9932] 0.9964] 0.9259] 0.9599)|

ConHR,| .

| | Diff | 0.0019] 0.0054| 0.0149| 0.0106 0.0008| -0.0007| 0.0097| 0.0050]

| |Score| 0.9929] 0.9869]0.9359]0.9607| 0.9942| 0.9972|0.9359/0.9656]

‘ConSG

\

LexLM ‘ Score‘ 0.9905

0.9858| 0.9110] 0.9469| 0.9924] 0.9971| 0.9162| 0.9549)

ComplEx, suffered from very low recall in the ConSS and ConHR variants. HolE
only performed well with the ConAll variant.

Comparing ConKG variants. Although ConHR paired with TransE per-
formed best, the three other embedding techniques failed to learn from it. Each
of the three variants, ConAll, ConSS, and ConSG, failed to learn with one em-
bedding technique. In other words, the learning in these three variants is more
stable than the ConHR variant across all embedding techniques.

5.6 Comparing ConKG variants across different generalization tests
using the best KG embedding technique

We trained the ConLMs with the TRAIN_ALL dataset and tested them with
the four generalization tests (as described in Section 5.4) using TransE (i.e., the
best KG embedding technique, as shown in Section 5.5). Here we discuss the
results obtained from the ConLMs variants for different ConKG variants.

12

Comparing ConKG variants. Table 6 shows that the ConHR and ConSG
variants consistently outperformed the LexLLM baseline, with performance gains
in every measure. The ConHR variant performed best for the tests GEN_ALL
and GEN_TOPN_SIM, while the ConSG performed best for the tests GEN_RAN_
SIM and GEN_RAN_NOSIM. The ConAll variant performed best in recall among
the ConKG variants for the tests GEN_ALL, GEN_TOPN_SIM.

Comparing generalization tests. As shown in the Diff rows in Table
6, adding hierarchical relations yielded the highest gain in precision (+5.94%),
recall (+1.49%), and F1 (43.72%) with the GEN_.TOPN_SIM dataset, i.e., the
dataset with the highest level of lexical similarity among negative examples. This
result validates our hypothesis that the addition of contextual information to the
LexLM would improve performance more markedly on lexically similar terms. Of
note, it also improved the performance in generalization tests with lower levels
of lexical similarity: GEN_RAN_SIM (40.54% in precision, +1.49% in recall,
and +1.06 in F1) and GEN_RAN_NOSIM (-0.07% in precision, 0.97% in recall,
and 0.5% in F1), albeit more modestly. Interestingly, increased performance on
lexically similar terms has not negatively affected the performance on less similar
terms. In fact, we observed some performance (in F1) on all test datasets.

6 Discussion and Future Work

Findings. As we hypothesized, the use of KG embeddings to add contextual in-
formation to the reference LexLLM yielded substantial performance improvement
over the LexLM baseline, especially in terms of precision. Even more remark-
ably, there was no concomitant loss of recall and the overall performance (F1)
also increased. We showed a large degree of variability among KG embedding
techniques and among types of contextual information. TransE performed best
overall, especially in combination with hierarchical relations. Finally, our ex-
periments also confirmed that the addition of contextual information not only
benefits pairs of terms with high lexical similarity as we expected, but also im-
proves performance on all test datasets.

Significance. The performance of the reference LexLM was already very
strong, especially given the limited information available to this model (i.e.,
only the lexical features of terms). However, given the very large number of
comparisons required for the Metathesaurus construction, the number of false
positives remained important despite precision values near 90%. Therefore, in-
creasing precision by 4.41% (to 93.16%) represents a substantial advance for the
UMLS vocabulary alignment (UVA) task, especially because recall was not neg-
atively affected. Another important result for the application of ConLLMs to the
UVA task is that the addition of contextual information to the LexLLM improves
performance on all datasets, not only on highly similar terms. This shows that
the performance of ConLLMs will likely generalize to the UMLS Metathesaurus
as a whole.

Limitation and Future Work. As mentioned earlier, this investigation is
no substitute for a systematic performance evaluation of KG embedding tech-

13

niques and thorough benchmarking. Our focus was rather on the application
to the UVA task. Performing a comprehensive analysis of the differences with
the LexLM baseline was beyond the scope of this investigation, but is part of
our future work. Finally, we are also planning to improve the performance of
the LexLM, e.g., by developing novel embedding techniques that consider the
unique characteristics of the UMLS Metathesaurus (especially the specific lexical
features and hierarchical organization of biomedical terms).

7 Related Work

Biomedical ontology alignment is a long-standing research effort driven by the
Ontology Alignment Evaluation Initiative (OAEI) since 2005. With the growth
of interest in integrating biomedical ontologies at scale [25], studies have looked
into using rule-based and statistical approaches [8,24, 14], as well as supervised
learning approaches for ontologies matching [7] by assessing the similarity [18,
30] and relatedness [19] between words and sentences. Such tasks are also known
as Semantic Text Similarity (STS) tasks. Recent progress has been attributed
to the use of a combination of knowledge-based similarity with deep learning
techniques, such as word embeddings [20] for input feature representation, and
Siamese Network [23,11,2,12] to learn the underlying semantics and structure.
Unsupervised approaches, such as transformer-based mechanisms, have also been
explored with a great degree of success [6]. Nonetheless, these techniques are
largely based on lexical features and require very large text corpora to learn
from. In our approach, we also exploit the graph structure of various types of
contextual information through the use of KG embeddings.

There are several families of KG embedding techniques [31]. Since this is the
first attempt to use the various types of contextual information in the UVA task
at scale, we explored two of the popular classes of techniques because of their
demonstrated success in various tasks: transitional distance-based with TransE
[3], and semantic matching-based using RESCAL [27], DistMult [34], HolE [26],
and ComplEx [29] [31]. We evaluated their performance in the UVA task, but
did not benchmark them against other forms of graph representation techniques
[13,33], such as Graph Convolutional Networks (GCNs) [17].

8 Conclusion

In summary, we demonstrated the importance of using contextual information
in the UMLS vocabulary alignment. More specifically, we showed that it was
possible to improve on the performance of a learning model based on the lexical
features of biomedical terms by taking into account the context of these terms
in their source vocabulary (source synonymy, source semantics, hierarchical re-
lations). Adding contextual information to the lexical model through KG em-
beddings yielded a substantial gain in precision with no negative effect on recall
and was particularly beneficial to lexically similar strings, such as homonyms,
but also improved performance overall.

14

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of
distance metrics in high dimensional space. In International conference on database
theory, pages 420-434. Springer, 2001.

A. Bento, A. Zouaq, and M. Gagnon. Ontology matching using convolutional
neural networks. In Proceedings of The 12th Language Resources and Evaluation
Conference, pages 5648-5653, 2020.

. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Trans-

lating embeddings for modeling multi-relational data. In Neural Information Pro-
cessing Systems (NIPS), pages 1-9, 2013.

J. J. Cimino. Auditing the unified medical language system with semantic methods.
Journal of the American Medical Informatics Association, 5(1):41-51, 1998.

J. J. Cimino, H. Min, and Y. Perl. Consistency across the hierarchies of the
umls semantic network and metathesaurus. Journal of biomedical informatics,
36(6):450-461, 2003.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontology matching: A ma-
chine learning approach. In Handbook on ontologies, pages 385—403. Springer, 2004.
D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz, and F. M. Couto. The
agreementmakerlight ontology matching system. In OTM Confederated Interna-
tional Conferences” On the Move to Meaningful Internet Systems”, pages 527—-541.
Springer, 2013.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber.
Lstm: A search space odyssey. IEEE transactions on neural networks and learning
systems, 28(10):2222-2232, 2016.

X. Han, S. Cao, L. Xin, Y. Lin, Z. Liu, M. Sun, and J. Li. Openke: An open toolkit
for knowledge embedding. In Proceedings of EMNLP, 2018.

H. He, K. Gimpel, and J. Lin. Multi-perspective sentence similarity modeling with
convolutional neural networks. In Proceedings of the 2015 conference on empirical
methods in natural language processing, pages 1576—-1586, 2015.

D. Huang, A. Ahmed, S. Y. Arafat, K. I. Rashid, Q. Abbas, and F. Ren.
Sentence-embedding and similarity via hybrid bidirectional-lstm and cnn utiliz-
ing weighted-pooling attention. IEICE TRANSACTIONS on Information and
Systems, 103(10):2216-2227, 2020.

S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu. A survey on
knowledge graphs: Representation, acquisition and applications. arXiv preprint
arXiv:2002.00388, 2020.

E. Jiménez-Ruiz and B. C. Grau. Logmap: Logic-based and scalable ontology
matching. In International Semantic Web Conference, pages 273—-288, 2011.

A. Jimeno-Yepes, E. Jiménez-Ruiz, R. Berlanga-Llavori, and D. Rebholz-
Schuhmann. Reuse of terminological resources for efficient ontological engineering
in life sciences. BMC' bioinformatics, 10(S10):S4, 2009.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

15

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

P. Kolyvakis, A. Kalousis, B. Smith, and D. Kiritsis. Biomedical ontology align-
ment: an approach based on representation learning. Journal of biomedical seman-
tics, 9(1):1-20, 2018.

Y. Mao and K. W. Fung. Use of word and graph embedding to measure semantic
relatedness between unified medical language system concepts. Journal of the
American Medical Informatics Association, 2020.

R. Mihalcea, C. Corley, C. Strapparava, et al. Corpus-based and knowledge-based
measures of text semantic similarity. In Aaai, volume 6, pages 775-780, 2006.

C. P. Morrey, J. Geller, M. Halper, and Y. Perl. The neighborhood auditing
tool: a hybrid interface for auditing the umls. Journal of biomedical informatics,
42(3):468-489, 20009.

F. Mougin, O. Bodenreider, and A. Burgun. Analyzing polysemous concepts from
a clinical perspective: Application to auditing concept categorization in the umls.
Journal of Biomedical Informatics, 42(3):440-451, 2009.

J. Mueller and A. Thyagarajan. Siamese recurrent architectures for learning sen-
tence similarity. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

D. Ngo and Z. Bellahsene. Overview of yam++7?(not) yet another matcher for
ontology alignment task. Journal of Web Semantics, 41:30-49, 2016.

V. Nguyen, H.-Y. Yip, and O. Bodenreider. Biomedical vocabulary alignment at
scale in the umls. In The Web Conference (WWW2021). ACM, 2021.

M. Nickel, L. Rosasco, and T. Poggio. Holographic embeddings of knowledge
graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 30, 2016.

M. Nickel, V. Tresp, and H.-P. Kriegel. A three-way model for collective learning
on multi-relational data. In Icml, 2011.

A. Sharma, P. Talukdar, et al. Towards understanding the geometry of knowledge
graph embeddings. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 122-131, 2018.

T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard. Complex embed-
dings for simple link prediction. In International Conference on Machine Learning,
pages 2071-2080. PMLR, 2016.

L. L. Wang, C. Bhagavatula, M. Neumann, K. Lo, C. Wilhelm, and W. Ammar.
Ontology alignment in the biomedical domain using entity definitions and context.
arXiw preprint arXiw:1806.07976, 2018.

Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A sur-
vey of approaches and applications. IEEE Transactions on Knowledge and Data
Engineering, 29(12):2724-2743, 2017.

Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the AAAI Conference on Artificial Intel-
legence, volume 28, 2014.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehen-
sive survey on graph neural networks. IEEFE transactions on neural networks and
learning systems, 2020.

B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations
for learning and inference in knowledge bases. arXiv preprint 1412.6575, 2014.

Y. Zhang, Q. Chen, Z. Yang, H. Lin, and Z. Lu. Biowordvec, improving biomedical
word embeddings with subword information and mesh. Scientific data, 6(1):1-9,
2019.

16

